
Space maps in Ext4

Saurabh Kadekodi (saurabhkadekodi@gmail.com)

Shweta Jain (atewhs.jain@gmail.com)

mailto:saurabhkadekodi@gmail.com
mailto:atewhs.jain@gmail.com
mailto:atewhs.jain@gmail.com
mailto:saurabhkadekodi@gmail.com

One liner...

To design and implement an extent based free space
management technique for Ext4 filesystem - Space Maps;
and an allocator, which uses space maps to manage the
allocation and deallocation of disk blocks.

Scenario

Process issues
write call

VFS directs
call to Ext4

Ext4 write call
is invoked

Bitmaps used
to find free

space

Low level I/O
operations

Scenario

Process issues
write call

VFS directs
call to Ext4

Ext4 write call
is invoked

Low level I/O
operations

Space maps
used to find
free space

Saurabh Kadekodi

Saurabh Kadekodi
Space maps replace the bitmaps (in the earlier slide) to provide free space information to processes wanting to write data to disk.

Current Technique

Bitmap + Buddy

32

Free Free Free Full Free100010

Bitmap
block

Bitmap
technique

Buddy
technique

Bitmap + Buddy

1616 32

Buddies

Free Free Free Full Free100010

Bitmap
block

Bitmap
technique

Buddy
technique

Bitmap + Buddy

16328 8

Buddies

Free Free Free Full Free100010

Bitmap
block

Bitmap
technique

Buddy
technique

Bitmap + Buddy

16328 4 4

Buddies

Free Free Free Full Free100010

Bitmap
block

Bitmap
technique

Buddy
technique

Bitmap + Buddy

16328 4 4

Free Free Free Full Free100010

Bitmap
block

Bitmap
technique

Buddy
technique

Disadvantages of current mechanism

B
itm

a
p

B
itm

a
p

B
itm

a
p

B
itm

a
p

Main MemoryMain Memory

Process issues call to
delete purple directory

Block
group 1

Block
group 2

Block
group 3

Block
group n

Disadvantages of current mechanism

B
itm

a
p

B
itm

a
p

B
itm

a
p

B
itm

a
p

0000000000000000
0000000000000000

Main MemoryMain Memory

Process issues call to
delete purple directory

Block
group 1

Block
group 2

Block
group 3

Block
group n

Saurabh Kadekodi

Saurabh Kadekodi
All the bitmaps corresponding to the disk space being freed have to be brought into memory and converted from 1 to 0 to indicate that they are free.

Disadvantages of current mechanism

B
itm

a
p

B
itm

a
p

B
itm

a
p

B
itm

a
p

0000000000000000
0000000000000000
0000000000000000

Main Memory

0000000000000000

Main Memory

Process issues call to
delete purple directory

Block
group 1

Block
group 2

Block
group 3

Block
group n

Seeking is the bottleneck; not the in-memory processing

Bitmaps scale linearly with the filesystem size

Bitmaps themselves consume a lot of memory; now buddy is
also involved

Cost to construct buddy in memory

Alignment to powers of 2 leads to internal fragmentation

In case of an aged filesystem, as contiguous free space is
scarce, we have to rely on inefficient bitmap lookup

Disadvantages of current mechanism

1 PB = 32 GB bitmaps

Extents

Indirect block mapping in inode

Preallocation

struct extent
{

int start_block;
int no_of_blocks;

}

0 | 1000

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Extents in Ext4

=

Space maps overview

Space Map

Space maps overview

RB Tree Log+

Space maps overview

RB Tree - A red black tree
having extents of free space,
sorted by offset.

100 | 245

10 | 25 1000 | 435

567 | 324

Log - A scratchpad
maintaining the recent
allocations and frees.

435 | 110 F

985 | 15 F

35 | 24 F

120 | 37 A

RB Tree Log

Block
group 1B

itm
a
p

Block
group 2B

itm
a
p

Block
group 3B

itm
a
p

Block
group nB

itm
a
p

S
p

a
c
e

M
a
p Block

group 1
Block

group 2
Block

group 3
Block

group n

With
space maps

1 metablockgroup

With bitmaps

Metablockgroup

Main Memory

Mounting the filesystem

S
p

a
c
e

M
a
p

 n

S
p

a
c
e

M
a
p

 2

S
p

a
c
e

M
a
p

 1

Metablockgroup 1 Metablockgroup 2 Metablockgroup n

Main Memory

Space Maps

S
p

a
c
e

M
a
p

 n

S
p

a
c
e

M
a
p

 2

S
p

a
c
e

M
a
p

 1

Metablockgroup 1 Metablockgroup 2 Metablockgroup n

Saurabh Kadekodi

Saurabh Kadekodi
Space maps are brought into memory only once, at mount time, and then persist in memory until filesystem umount.

Main Memory

Space Maps

All further filesystem operations

S
p

a
c
e

M
a
p

 n

S
p

a
c
e

M
a
p

 2

S
p

a
c
e

M
a
p

 1

Metablockgroup 1 Metablockgroup 2 Metablockgroup n

Design Details

Structural details

In memory On disk

Start block
number

Length rb_node

RB tree node

4 bytes 4 bytes 12 bytes

Start block
number

Length Flags

Log entry

4 bytes 4 bytes 1 byte

Start block
number

Length

Tree node

4 bytes 4 bytes

Start block
number

Length Flags

Log node

4 bytes 4 bytes 1 byte

Working

When the filesystem is newly made

In memory log In memory tree

On disk treeOn disk log

0 | 5000

0 | 5000Empty

Empty

Saurabh Kadekodi
We work only on the in-memory copies.

In memory log In memory tree

On disk treeOn disk log

0 | 5000

0 | 5000

Allocation request of 200 blocks from offset 600

600|200 A

600|200 A

Saurabh Kadekodi
During allocation, the process followed is that we first refer to the in-memory log to fill up a free (if present), then we refer to the in-memory tree to find out whether the requested extent is free. If it is free, we make an entry of the allocation request in the in-memory and on-disk logs in a transactional manner. We do NOT reflect the changes in the tree immediately.

In memory log In memory tree

On disk treeOn disk log

0 | 5000

600|200 A

Allocation request of 150 blocks from offset 450

0 | 599

800 | 4200

450|150 A

450|150 A

In memory log In memory tree

On disk treeOn disk log

0 | 5000

600|200 A

0 | 599

800 | 4200

450|150 A

450|150 A

650|150 F

650|150 F

Free request of 150 blocks from offset 650

Saurabh Kadekodi
For a free request, we simply have to make an entry in both the logs regarding the freed extent. This is unlike bitmaps, where we had to fetch the particular bitmaps corresponding to the blocks being freed, change bits from 1 to 0 and write them back to disk. Thus, frees are extremely fast in space maps.

In memory log In memory tree

On disk treeOn disk log

0 | 5000

After a few filesystem operations

3711|123 A
1009|226 F
3148|173 F
328|106 F

1235 | 327

434 | 16

115 | 213

1800 | 215

3035 | 113

3321 | 513

...
600|200 A

328|106 F

In memory log In memory tree

On disk treeOn disk log

0 | 5000

3711|123 A
1009|226 F

328|106 F
1235 | 327

434 | 16

115 | 213

1800 | 215

3035 | 113

3321 | 513

Allocation request of 120 blocks

3268|53 F

...
600|200 A

328|106 F
3148|120 A

Saurabh Kadekodi
This is the most interesting scenario, where there are frees in the log, which are nothing but the holes in the FS. When an allocation request is received at such a point, the frees (holes) in the log are utilized before breaking a more contiguous free chunk from the tree. This reduces fragmentation.

In memory log In memory tree

On disk treeOn disk log

0 | 5000

Allocation request of 250 blocks from offset 115

115|250 A

1060 | 502

115 | 335

1800 | 215

3035 | 113

3268 | 243

...
600|200 A

328|106 F
3148|120 A
115|250 A

In memory log In memory tree

On disk treeOn disk log

While unmounting

1060 | 502

365 | 85

1800 | 215

3035 | 113

3268 | 243

Saurabh Kadekodi
While unmounting, we just replay the in-memory log onto the in-memory tree to get the most up-to-date status, write the in-memory tree onto disk, and erase the on-disk log. Next time we mount, we simply need to read the on-disk tree to memory and start working.

Evaluation

Testing Environment

Kernel version 2.6.33.2

Partition size 50 GB

4 GB RAM reduced to 384 MB to prevent excessive
caching

1K block size to increase number of bitmaps

Intel Core2Duo processor (2.9 GHz)

1. Small file writes

Small file operations;
A mail-server like workload using postmark

Bitmaps Space Maps

1. Small file writes

Bitmaps Space Maps

2. Small file deletes

Seekwatcher graphs

Simultaneous large file-
small file creation

Seekwatcher graphs

Bitmaps Space Maps

1. Free space fragments using e2freefrag

13% 26% 39% 52% 64% 77% 89%

Filesystem usage

Bitmaps Space Maps

2. Quality of the free space fragments

P
e
rc

e
n
ta

g
e
 o

f fre
e
 sp

a
c
e

fra
g
m

e
n
ts b

e
tw

e
e
n
 1

G
 a

n
d

 2
G

13% 26% 39% 52% 64% 77% 89%

Filesystem usage

Bitmaps Space Maps

3. File fragmentation measure using filefrag

24% 48% 72% 96%

Filesystem usage

Resulting benefits

Log based design; perfect locality. Only last block of on-disk log
required in memory.

No linear relationship with filesystem; thus scalable.

Contiguous updates on disk, thus benefiting reads.

Block
group 2

Block
group 3

Block
group n

Block
group 1

Reduction in seeks leading to faster allocation and deallocation.

Reduced free space fragmentation and file fragmentation.

Limitations

Mount / Unmount time delay for reading / writing space
maps respectively.

Every alternate block if full (theoretically worst case
scenario).

The road ahead...

Future enhancements

Separation of space maps based on file sizes.

Efficient data structure for log.

Saurabh Kadekodi
If there are separate space maps for large files, and separate space maps for small files, then any new request can be targeted to space maps suitable to the size of the request as there is more probability of holes in logs being of that nature, and the holes can be filled up more efficiently reducing fragmentation.

Saurabh Kadekodi
Currently the log is a very primitive array of recent operations, but a better data structures through which we can search better will improve the performance.

Conclusion

With space maps, free space information is available
completely in-memory resulting in faster filesystem
operations.

Further optimizations in space maps will make it more
robust and definitely lift the performance of Ext4 even
higher.

References

Mathur A., Cao M., Bhattacharya S., Dilger A., Tomas A and Viver L.; The New ext4 filesystem: current

status and future plans

Avantika Mathur, Mingming Cao and Andreas Dilger; ext4: the next generation of the ext3 filesystem

Aneesh Kumar K.V, Mingming Cao, Jose R Santos and Andreas Dilger; Ext4 block and inode allocator

improvements

Ext4 (http://kernelnewbies.org/Ext4)

Mingming Cao, et.al.; State of the Art: Where we are with the Ext3 filesystem

Jeff Bonwick; Space Maps (zFS)

Rob Landley; Red-black tree

Chris Mason; Seekwatcher

Rupesh Thakare, Andreas Dilger, Kalpak Shah; e2freefrag

Jeffrey Katcher; PostMark: A New File System Benchmark

Jens Axboe, Alan D. Brunelle and Nathan Scott; blktrace User Guide

Theodore Tso; filefrag

Thank You

