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Compression in Checkpointing and Fault Tolerance Systems

Saurabh Kadekodi, Northwestern University

Considering the pace at which HPC systems are growing today, reliability, frequency and efficiency of fault
tolerance mechanisms have become one of their most important problems. As a part of this study, we un-
derstand the many faces of checkpoint / restore, the de-facto fault tolerance method in practice. We then
shift our focus to the various ways in which optimizations are performed while checkpointing and focus on
optimizations due to size reduction. After a survey of a few important optimization ideas, we narrow down
upon a void that can be filled with regards to compiler-assisted checkpoint compression and hope that this
the path that will keep fault tolerance abreast with tomorrows HPC systems.
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1. INTRODUCTION
Fault tolerance is probably one of the greatest challenges that the high performance
computing (HPC) community is facing today. With exascale computing and petascale
machinery, the mean time between failure of the these humongous system is in mere
minutes [Schroeder and Gibson 2007]. To be able to withstand this kind of failure rate,
measures are being taken to develop fault tolerant mechanisms that save the state
of these machines at sub-second intervals. The cost of these mechanisms is so high
that a very significant amount of CPU, I/O bandwidth and time is spent in ensuring
safety from faults. In a study in 2007 [Schroeder and Gibson 2007], it was predicted
that at the then forecasted rate of doubling of cores per chip, by 2013, almost 100%
of the time in petascale systems would be spent in checkpointing and recovery from
faults. Another study shows that 75-80% of the I/O traffic on current HPC systems
is due to checkpointing [Petrini 2002]. 2013 has dawned, and fortunately, we are not
spending all our time in recovery from failure, but that situation is very much around
the corner. This emphasizes the immediate need to look into fault tolerance and make
it withstand the speed at which HPC systems are growing.

We start by defining checkpoint / restore and then classify it according to a couple
of dimensions. Following that, we explain the important characteristics that a good
checkpointing systems must exhibit in order to keep up with increasing system sizes.
Then, we delve into checkpoint optimization and explain some techniques of optimiza-
tion. A small survey of important checkpoint size reduction ideas follows after which
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we finally conclude with an analysis of what is present and how we should approach
the future.

2. CHECKPOINT / RESTORE
Checkpointing is the de-facto fault tolerance mechanism in practice today and has
seen decades of research. It involves periodically storing the state of a computer (which
primarily consists of memory and the registers) to stable storage such that, in the face
of a failure, we can restart the system at the last checkpoint that was stored onto
disk. One of the most important benefits of checkpointing over other fault-tolerant
techniques is cost-effectiveness. It requires much lesser infrastructure than methods
like redundancy, making it an attractive option for HPC systems. On the other hand,
it also has disadvantages like complexity. With ever reducing checkpoint intervals, it
is becoming a very hard task to provide correct and efficient checkpointing.

3. CLASSIFICATION OF CHECKPOINTING SCHEMES
Checkpointing can be classified along various dimensions. We will start by identifying
checkpoints by their scope. These are the typical granularities at which checkpointing
schemes are developed, each with their own advantages and disadvantages.

3.1. System-level Checkpoints
These checkpoints are taken at the OS level. The thought behind these checkpoints
is to provide fault tolerance to applications that are already running, but do not have
any application level fault handling mechanism. We believe these are best suited for
machines that either run a bunch of very varied application workloads and its very
difficult for all of them to maintain checkpoints independently or have legacy appli-
cations running on them that are not equipped with checkpointing. The advantage of
these checkpoints are that applications (and thus their developers) need not care about
checkpointing / recovery, which can be a daunting task to implement. More often than
not, they are not (and dont need to be) aware of the fact that checkpointing is even hap-
pening underneath. The downside is that these checkpoints do not really care about
the nature of the application that runs on that OS. They measure all the applications
by the same yardstick. Some examples of system-level checkpoints are [Pinheiro 1998],
[Duell 2003] and [Zhong and Nieh 2001].

3.2. Application-level Checkpoints
These checkpoints are at the other extreme. They are completely application-based,
and are in fact, written by the developers of the application. The notion behind this
scheme is that the application itself is the best judge of when and what it needs to
save in order to minimize loss in the face of failure. Advantage(s) - In agreement with
the notion, the application has precise knowledge of the state it needs to save in order
to reconstruct following a failure. There might be large amounts of memory that need
not be saved at all (which the system-level checkpointing schemes are not at all aware
of), and that could result in very efficient checkpointing. Disadvantage(s) - Neither are
all the already running, widespread legacy applications equipped with checkpointing
code, nor is it possible to update them to include checkpointing facilities. Moreover,
devising algorithms for checkpoint / restore is a complicated task in itself, not every-
one’s cup of tea. In fact, at a relatively recent survey at the Texas Advanced Computing
Center (TACC) [Texas Advanced Computing Center 2009], over 65% respondents said
that they would be interested in completely automated checkpoint support.
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3.3. Library-level Checkpoints
This checkpointing mechanism is also referred to as compiler-level or runtime-level. In
contrast to the two extreme granularities mentioned above, library-level conveniently
sits at a spot neither too close to the application, nor too far away from it. In terms
of benefits, these checkpointing schemes identify pretty closely with the application
that is running and can do a fair bit of analysis to identify important information
of an application at compile-time / runtime. While this seems to give the best of both
worlds, one of the biggest challenges that this technique faces, is when to take a certain
checkpoint. A typical case where timing of the checkpoint can make a huge difference,
is when checkpoints are initiated when a process is in a loop, or is performing some
temporary computation that is very memory or I/O intensive. If the scheme had been a
little more application aware, it would have prevented this by taking a checkpoint at a
more appropriate time. Some example of library-level checkpointing are [James Plank
et al. 1995], [Michael Litzkow, Todd Tannenbaum, Jim Basney and Miron Livny 1997]
and [Yi-min Wang et al. 1995].

Another way of classifying checkpoints is on the amount of data stored at each check-
point interval.

3.4. Non-Incremental (Whole) Checkpoints
In non-incremental checkpoints, the entire memory (the bulk in any checkpoint) is
saved to disk at every interval. This is beneficial when most of the memory is dirtied
in every interval. Most workloads show that this is not true because of locality. Another
advantage of this technique is that it is only essential that you store the latest check-
point on disk. In systems where disk space is very limited and / or costly, this technique
proves more cost effective than incremental checkpointing. The obvious disadvantage
of this scheme is that entire memory needs to be written to disk on every interval, an
inherently costly task. For intervals that are very far apart, this scheme might make
sense, but for sub-second intervals, it is a near impossible scheme to implement.

3.5. Incremental Checkpoints
As the name suggests, this technique only saves the changed pages of memory (since
the last checkpoint) onto disk. Locality aids this technique tremendously. Unlike en-
tire checkpoints, we need to store the whole sequence of checkpoints taken from the
start till the latest increment in order to reconstruct the system in case of failure. Due
to this, not only is more disk space needed, but reconstruction cost is also higher than
non-incremental checkpoints. But, since recovery is not the common case, this tech-
nique still fares better than non-incremental checkpoints, especially in read-intensive
workloads. Another disadvantage of this technique is that the memory is updated at
word-granularity and memory is checkpointed at page-granularity. This incurs sub-
stantial cost and interesting schemes have been proposed to tackle this problem, which
we will see in later sections.

4. IMPORTANT CHARACTERISTICS OF A GOOD CHECKPOINTING MECHANISM
A good checkpointing technique must exhibit the following characteristics:

4.1. Minimize Size
The smaller the footprint of a checkpoint, the more efficiently and quickly it can be
taken. The bottleneck of checkpointing is the disk writes that take place. By minimiz-
ing size, we affect the largest overhead in checkpointing, thus guaranteeing speedup.
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4.2. Minimize Checkpoint Time
In most cases, application(s) are completely stalled when a checkpoint is taken. This is
to prevent inconsistencies that can occur because of changing memory when the check-
point is in progress. This reduces the effective computation time that the application
gets and affects its performance.

4.3. Minimize Resource Usage
4.4. Minimize Power
4.5. Minimize Restore Time
In the face of failure, it is very essential that a system can recover from it as quickly
as possible. Downtime is a very costly proposition, especially in high-end systems.

5. OVERVIEW OF CHECKPOINT OPTIMIZATION
As mentioned briefly in the introduction, the trends in HPC systems growth show
that the MTBF of the largest systems from the top500.org list are set to fall below
10 minutes in the very immediate future [Bianca Schroeder and Garth Gibson 2005]!
With such alarming failure rates, it is essential that massive effort is put into faster,
reliable and sub-second interval fault tolerance. There are two main sets in which
optimization of checkpoints can be categorized. Both categories aim at reducing the
time needed for taking a checkpoint.

The first set of ideas aims at reducing the checkpoint time by hiding the latency of
committing a checkpoint. Some of the intelligent strategies in this set are:

5.1. Staggered Checkpoints [Alison Nicholas Norman 2010]
This is in contrast with co-ordinated checkpoints. It makes a complete checkpoint of
the system possible through multiple checkpoints from multiple processes at different
points in time reducing network and disk contention.

5.2. Diskless Checkpoints [James S. Plank et al. 1997]
Since the largest bottleneck are disk writes, this technique eliminates that aspect com-
pletely by checkpointing in memory rather than on disk. It has a direct advantage of
restoration as it just has to switch between address spaces to make that possible. Of
course this has its own repercussions, but it still reduces overall checkpointing time.

5.3. Co-Operative Checkpoints
This technique exploits the memory redundancy across multiple nodes running paral-
lel [Lei Xia and Peter Dinda 2012] applications to distribute the job of taking a check-
point across multiple nodes. This parallelizes checkpointing and in high-end infras-
tructures, can prove to be extremely effective in reducing checkpoint time.

The second set aims at reducing the size of the checkpoint in order to reduce the
amount of data it needs to write to disk. As this paper concentrates on the reduction
of size aspect of optimization, we first explain a couple of important ideas from this
approach and then explain a few implementations in more detail.

6. IMPORTANT OPTIMIZATION IDEAS IN CHECKPOINT SIZE REDUCTION
6.1. Deduplication
Recent studies have shown that parallel applications exhibit a very high degree of
duplicate memory. This can be of the order of 80% in some cases [Lei Xia and Peter
Dinda 2012]. Deduplication aims at saving only one copy per duplicate memory page
during a checkpoint. Unique pages along with the information of the various locations
of where they were duplicated is good enough to reconstruct the state of the machine
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following a failure. Deduplication also reduces disk space needed to store checkpoints
and makes it a very attractive checkpoint compression method. A challenge in this
technique is how to accurately keep track of the duplicates of every page in memory.
This metadata can be quite heavy and can itself incur a lot of memory cost. Another
method of deduplication within checkpoints is via similarity detection. To understand
this better, consider the setup to be an incremental checkpointing scheme. Similar-
ity detection deals with finding similarity between a chunk of memory that is being
written in the current checkpoint with chunks in previously written checkpoints. If a
match is found, a mere pointer to the checkpoint chunk that contains the same data is
enough to ensure correctness of the checkpoint.

6.2. Compression
As the name of the technique indicates, this deals with compressing the data to be
checkpointed before writing it to disk. This reduces the size of the checkpoint and thus
speeds up the process of taking a checkpoint as writing to disk is the main bottleneck of
checkpointing. The downside to this is that compression algorithms are very resource
and time intensive. In fact, Plank and Li have derived an equation that suggests that
compression can benefit checkpointing only if the rate of compression is higher than
the rate of disk writes [James S. Plank et al. 1997]. In a more recent effort [Schroeder
and Gibson 2007], Schroeder and Gibson performed a study which explained the na-
ture of failures in petascale systems and future predictions. With the current state-
of-the-art systems, they recommended that rather than applications spending time on
other optimization techniques, they should consider spending more time and effort
compressing checkpoints. As a part of a much more relevant work [Dewan Ibtesham
et al. 2011] (and in the very recent past) on the viability of compression for reducing
overheads in checkpointing, Ibtesham et. al. concluded that compression was effective
not only for storing a checkpoint, but also for recovery from it. In our opinion their
work is the only one that concentrates on the effect of compression on checkpointing
and they have shown some extremely positive results and comparisons making com-
pression the forerunner in fault tolerance optimization as of today.

7. A SMALL SURVEY OF OPTIMIZATION IDEAS RELATED TO CHECKPOINT SIZE
REDUCTION

7.1. Compiler Assisted Techniques for Checkpointing (CATCH) [Micah Beck et al. 1994]
This was one of the first works in compiler-assisted checkpointing. It analyzes com-
pile time program information to inject code, which at runtime checkpoints a process
subject to a certain checkpoint interval that needs to be maintained. Its analysis of
the program to identify the places that it needs to checkpoint the process is called
the potential checkpoint selection problem. Since potential checkpoint selection is NP-
Complete, in this technique, the authors propose a suboptimal solution, achieved by
heuristics. At compile-time this technique injects a function call checkpoint() into the
program to checkpoint the process at an appropriate time. A big challenge in doing
this is to find when a checkpoint can and should be taken. For this purpose, they inject
another function call called potenial() at several places in the code. The job of this
function is twofold:

— To honor the checkpoint interval time (i.e. not exceed the checkpoint interval, or it
might result in loss of more computation)

— To minimize resources (i.e. space and time for checkpointing)

Once it finds a sweet spot that obeys the above rules (and minimizes the second rule), it
calls the checkpoint() routine and establishes a checkpoint. Through potential check-
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point measurement, it succeeds on the idea that small variation in checkpoint interval
timings may save substantial system resources. The authors mention that compres-
sion could work really well in assisting them to further reduce the checkpoint size. In
fact, their algorithm even has an LZW compressor algorithm within in, but it really
slows down checkpointing because of its resource hogging.

7.2. Data Aware Aggregation and Compression [Tanzima Zerin Islam et al. 2012]
This is a very recent study that explores the effects of data-aware aggregation cou-
pled with data-aware compression in order to improve compressibility of checkpoints.
Data-aware aggregation deals with aggregating across process checkpoints such that
semantically similar data stays close together. The motivation behind this is that dic-
tionary based compression algorithms work best when they have similar data that is
close together. This is because almost all compression utilities have a finite window
in which they search for similarities that they can compress. Based on the nature of
the data, the implementation dynamically selects the compression algorithm that is
best suited for that data. The semantics of data are captured through I/O libraries like
HDF5 and netCDF. The authors claim a substantial increase in compressibility and
significantly reduced checkpoint and restart overheads over simplistic compression.

7.3. Compiler assisted memory exclusion (CAME) [James S. Plank et al. 1996]
This technique relies on memory exclusion, i.e. it identifies regions of memory of a
process that need not be stored in a checkpoint at all, before checkpointing, and thus
reduces the size of a checkpoint. The authors define unneeded memory pages as either
read-only (meaning that they have not changed in the current checkpoint interval)
or as dead (meaning that they are not required for the successful completion of the
process). It performs this by combining user directives with static, data flow analysis
to achieve the necessary optimization to checkpointing.

7.4. Adaptive block size variation [Saurabh Agarwal et al. 2004]
This is a paper that has a relatively fresh take on optimizing incremental check-
pointing to reduce checkpoint size. The authors propose a self-optimizing algorithm
that adaptively calculates the optimal block-boundaries of memory to be checkpointed
based on historical checkpoints. With each checkpoint they narrow in on the near-exact
memory granularity that guarantees minimum wastage in terms of writing memory
to disk. An interesting utility that the authors have developed is called merge. This
stand-alone utility does the job of merging incremental checkpoint files into one non-
incremental checkpoint file. Merge is expected to be executed by the system adminis-
trator at regular intervals to reduce disk space required by incremental checkpoints
and also to assist the speed of recovery from failure.

7.5. Compressed Differences [James S. Plank et al. 1995]
This technique proposes to reduce incremental checkpoint size through the combina-
tion of tracking word-level changes to memory (as against page level), buffering and
fast compression. It directly acts upon the disadvantage of incremental checkpointing.
The compression technique used in this paper is delta compression. The authors men-
tion the reason of why they chose delta compression over LZW and Burrows-Wheeler
transform and attribute its inspiration to a technique mentioned in Diskless Check-
pointing. The reason for choosing this was that according to analysis by Plank and Li
[James S. Plank et al. 1997], compression only aids checkpointing if rate of compression
is higher than the rate of disk writes. This is a crucial insight into how the specificity
of compression algorithms affects checkpoint optimization substantially. This is one of
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the only paper among the ones we referenced where we found some reason about why
a particular compression algorithm was chosen (or for that matter rejected).

8. TAKEAWAY AND FUTURE DIRECTION
An important point to note among all the above ideas and the general consensus of
researchers in fault tolerance is that compressing checkpoints is very essential, and
in fact it is looked at to be the next-big-thing as far as optimizing checkpoints is con-
cerned. Having said this, there is a large void that surrounds this insight. The general
trend in checkpointing has been to firstly, try and reduce the need to checkpoint at all.
Now that we all are at a stage where checkpointing is a must, the focus has been on
when to checkpoint. This does remarkably affect checkpoint size as seen in the results
of techniques like CATCH [Micah Beck et al. 1994].

We believe that now, assuming compression as a mandatory requirement for efficient
checkpointing, we need to focus on what exactly is the content being checkpointed and
exploit the knowledge of its structure and nature to achieve overall efficiency through
focused, type-specific compression. The motivation for this research lies in locality and
the fact that no compression algorithm is best for all types of data [David Salomon
2004]. Consider for example scientific workloads that are predominant on high-end
machines. They tend to have very focussed applications running on them for very large
amounts of time. Weather predictors, matrix multipliers, earthquake analyzers are
examples of workloads that are seen on HPC systems. Their data consists of known
type of, but very large set of similar type objects. Temporal / spatial locality and sub-
second checkpoint intervals result in the presence of extremely similar data which
needs to be checkpointed in every interval.

This can undoubtedly be looked at best from the application specific level, but sub-
stantial analysis can also be performed at the compiler level. Compilers can provide
immense insight into the structure of data of a program. For languages like C, if we can
make a note of the various structures corresponding to the variables at compile-time
and identify their occurrence at runtime, we will essentially know which datatype we
are dealing with. For more high-level languages, the runtime itself exposes informa-
tion of the datatype of the variables.

We could leverage this information to dynamically choose from a set of known
datatype-specific compression algorithms. We hope that this would result in a much
better compression ratio, while at the same time also provide the necessary compres-
sion speed making it a win-win situation, especially for HPC systems.

9. CONCLUSION
In this report, we have shown checkpoint / restore mechanisms from a variety of per-
spectives. We classified checkpoints and gave several examples of currently existing
techniques. Along with that, we also covered some interesting optimization techniques
that show a very small subset of the various approaches that researchers explore for
making checkpoints more efficient. This study throws light on an important void that
remains frugally answered - What compression algorithm should be used for check-
point compression? In our opinion, the answer lies in compiler-level checkpoint tech-
niques that can leverage the data being checkpointed at runtime to dynamically choose
the best compression algorithm.
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