Virtual Machine Co-migration -

Saurabh Kadekodi
Northwestern University
Evanston,IL
saurabhkadekodi2013
@u.northwestern.edu

ABSTRACT

The migration of virtual machine from one physical node to
another is a common practice in the modern data center. In
this paper, we developed a framework which is able to do
virtual machine co-migration. Different from the classical
single source to single destination migration, Co-migration
will migrate and instantiate a group of virtual machines
on the destination physical nodes. We test our framework
using Palacios, a OS independent virtual machine monitor
(VMM). The experiment results show that our framework
can guarantee the integrity of virtual machine pages as well
as satisfactory throughput.

Categories and Subject Descriptors
D.4.2 [Storage Management|: Memory, Networking

General Terms
Design

Keywords

Virtual machine, Live and dead migration, Co-migration,
Reliable UDP

1. INTRODUCTION

Co-migration is the process of collaboratively migrating
a group of virtual machines to different destination physical
nodes. The source virtual machines can be deployed on more
than one physical nodes and managed by different instances
of virtual machine monitor. The goal of co-migration is to
migrate them as a whole group to the destination with high
throughput and little delay. Co-migration can either be live
or dead. The application service running on of the virtual
machine will not halt while the migration is in progress, and
on the contrary, in dead migration, the the memory page will

>kSummary paper for the quarter long project of EECS441
Resource Virtualization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOODSTOCK *EECS441 Resource Virtualization

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Chao Shi
Northwestern University

Evanston,IL
chaoshi2012
@u.northwestern.edu

Qingyuan Zhang
Northwestern University
Evanston,IL
zqy@u.northwestern.edu

be snapshotted before migration. For simplicity reasons, we
are only implementing the dead migration version.

One of the advantages of co-migration is that it utilize
the shared memory pages among different virtual machines
in an optimized way. In the real world, it is more common
to migrate a service which is provided by a group of virtual
machines having large portion of duplicated memory con-
tents. By addressing the contents in the distributed hash
table, the co-migration method can provide high efficiency
by reducing the number of pages being transmitted over the
network. Secondly, the co-migration will provide load bal-
ancing and provide high throughput by coordinating among
source physical nodes. For example, if one of the VMMs
is experiencing trouble sending pages, the other VMMs can
take over its job. The nature of page content sharing and
parallelism both improve the efficiency.

In our project, we implement our framework for doing
virtual machine co-migration on the platform of Palacios,
which is a OS independent virtual machine monitor. Pala-
cios can be compiled into a linux kernel module and provides
many useful interfaces to the linux library. Before our de-
velopment, palacios only provides some tools which can save
the state of the virtual machine to a remote place across the
network. Now, the user can co-migrate a group of virtual
machines by giving the co-migration mapping file as the in-
put. The file indicates a full list of 6-dimensional tuples
in the format of {src_-vmm_ip, src_vm_name, src_page_num,
dst_vmm_ip, dst_vm _name, dst_page_num }.

To obtain the co-migration mapping, we have to utilise
CONCORD, a system which is based on distributed hash
table and is able to track the memory pages. Given the hash
value of the memory page, it will inform the virtual machine
monitor how the memory pages are duplicated among dif-
ferent virtual machines.

When transferring the memory stream, we are using UDP
instead of TCP. The major reason is that UDP is little
in handshake and out-of-order retransmission overhead and
thus more scalable. We add some additional features to pro-
vide a connectionless transmission mechanism which guar-
antee data integrity but not correct order. The major reason
is that page arrival order is not important and this sacrifice
can greatly reduce the number of retransmissions.

The following of the paper is organized as follows. Part
2 will briefly introduce the hot topics in the research of vir-
tual machine migration. Part 3 will discuss our design idea
and implementation details. Part 4 will show some of our
experimental results and part 5 will be examining the future
work.

CONCORD

VA Source VMs

Destination VMs

Figure 1: Architecture for Virtual Machine Co-
migration

2. RELATED WORK

A number of mechanisms have been proposed to solve
the problem of virtual machine migration and instantiation.
Most of the focuses was on transferring memory pages from
a single source to a single destination over a local-area of
wide-area network. Much work has been done on the live
migration and many among them [1] [2] are using the as-
sistance from a shared storage system for virtual machine
memory pages. VMFlock [3] is the working on co-migration
of a cluster of virtual machines and our framework is simi-
lar to that in some aspects. For example, VMFlock is able
to chunk the memory of virtual machines and address them
using it hash value, which is somehow sharing the idea with
CONCORD. Besides, VMFlock is able to exploits the sim-
ilarity of the pages to be transmitted and thus reduce the
packets over the wire. One major difference from VMFlock
is that we are also considering the efficiency of data trans-
mission on the network, which becomes a problem when the
size of the co-migration virtual machine group grows up.

3. SYSTEM DESIGN AND IMPLEMENTA -
TION

Figure 1 briefly summarises the architecture of our frame-
work. There are multiple physical nodes for the source group
and each of them will run a separate virtual machine moni-
tor. On each virtual machine monitor, there can be multiple
virtual machines running on top. CONCORD is a separate
system which is based on distributed hash table for storing
the memory page hash. By contacting CONCORD with the
input of the memory page hash value, the virtual machine
monitor is able to know the exact location of the duplicated
memory pages.

The virtual machine monitor has full control over the
physical memory space of the virtual machines. The physi-
cal memory space of virtual machine is continuously mapped
onto the a physical address of the host machine, which saves
us the trouble of locating a specific page content on the host.
The virtual machine monitor will do the page transmission
on behalf of the virtual machines. From the perspective of
the virtual machine monitor, the page content is merely a
byte stream starting at the host virtual address translated
from the host physical address called guest memory base

pointer. We simply implemented a UDP interface which is
able to deal with reliable byte stream transmission in the
first half of the quarter.

3.1 Reliable UDP

As mentioned before, one of the reasons we are using
UDP instead of TCP is scalability and little overhead. UDP
is a best-effort connectionless transport layer protocol which
only provides us a checksum to detect whether the datagram
received is corrupted or not. If the datagram is corrupted
or lost, there is no retransmission process, and there is no
mechanisms to guarantee that the datagrams arrive in the
right order.

For our project, the integrity of the transmitted memory
pages is critical because otherwise, one will not be able to
reboot it afterwards, and therefore there have to be some
mechanisms to guarantee that the correct page contents fi-
nally arrives. The right order, however is less important for
our project, this is because each memory page encapsulated
into the packet is tagged with the metadata containing the
page number. The receive does not have to access the mem-
ory sequentially and can write one page into memory even
if it comes out of order.

3.1.1 Design Idea

We implement our extended version of UDP protocol in
application layer rather than directly change the code in
the transport layer. Different from the traditional UDP, the
receiver will send out an acknowledgement message back to
the sender encapsulated in the normal UDP datagram when
the previous data has been successfully received with no
corruption. The sender will resend the packet if it does not
receive the packet within a certain time frame. The timeout
value for now is 5 seconds. Besides, there is a limit to the
number of retransmission, which is set to be no larger than 5.
This method is considered much simpler to be implemented.

The data to be transmitted is tagged with some format of
metadata, which is not trivial. The destination ip address
and port number is self-explanatory. The buf is used to con-
vey the byte in the page, and the MAX PACKAGE_LENGTH
denotes the maximum number of bytes in a page. In the real
world case, the memory pages are in the size of 4KB, but
to guarantee that the frame size does not exceed the value
of MTU, we split one page into four parts and encapsulate
them in four packets. MAX_PACKAGE_LENGTH is set to
be 1024 in our scenario. len, type and package number are
some control information values which are used to assure
integrity. The guest number belongs to one of the virtual
machines running on top of the destination VMM and to-
gether with the page_number is used to write the byte stream
to a specific memory page inside that virtual machine. The
data is sent together with the metadata in transmission as
a whole packet.

struct pkg_struct

unsigned int dest_ip;

int dest_port;

char bufMAX PACKAGE_LENGTH];
int len;

int type;

long package_amount;

int guest_number;

long page_number;

}

While the structure for the acknowledgement packet is
much simpler.
struct ack pkg
{
int type;
long seq_id;

}

Similar to the selective repetition algorithm, the receiver
is able to selectively acknowledge the arriving packets. The
most important difference is that the receiver does not need
to buffer the out-of-order packets, instead it can directly sur-
render the bytes got from the wire to the party interested
even though the packet does not have the next sequence
identifier expected. For the sender, there still exists a ped-
ing list containing all the packets which are sent out and
not ACKed. The packet is removed from the list when the
corresponding ACK arrives and resent over the wire again if
timeout. For the receiver party, there is no such a list put
the packets back in order, namely with window size being 1.

3.1.2 Thread Model

The sender and receiver will be both implemented with
multi-thread concepts. We use multi-thread in order to

avoid blocking I/O. The sender will basically have two thread.

One thread is for receiving the inbound ACKs from the other
side. Another thread is for timing and resending. The first
thread for ACK receiving will listen on a well known port
number and capture all the ACKs. It will then traverse the
pending list and remove the ACKed packet from it. It will
make modifications for the window if needed. It will also re-
set the timer if there are still pending packets in the list. For
the timout thread, it will sleep for the interval of the timeout
value each round, and when it wake up, it will retransmit
the first packet in the pending list.

The receiver side is pretty straightforward, it only contains
one thread for receiving all inbound packets and ACK them
if the checksum is correct.

3.1.3 Implementation

As is seen later, the major code execution happens in the
palacios itself, which is the virtual machine monitor. The
codebase tell us it is really hard to implement your code
inside palacios. The reason is you cannot use any user space
library functions, and besides you have to use the functions
equivalent to linux kernel functions from palacios itself. To
solve this problem, we are implementing our reliable udp in
the space of linux_ module where we have all access to linux
kernel functions. The when the code in palacios want to use
that service, it will use the socket hook in vmm_socket.c to
initiate those function calls.

3.2 Sending Process

For the sending process, we are actually calling ioctl on the
VMM device itself rather than a specific virtual machine this
is because there are multiple virtual machines to be migrated
and calling ioctl on each one is cumbersome. Another reason
is that VMM has a good view of the mapping of the guest
physical address to the host physical address.

The VMM will be able to get the data structure for each
virtual machine running on top of it. The host physical

address where the physical guest base memory is mapped
to (HPA) can be accessed through the structure. The host
physical address for a particular page base can be calcu-
lated by adding the the product of page number and 1024
to HPA. After that, there is a macro translating that host
physical address into host virtual address. We can use that
host virtual address as the starting pointer for memory page
copying and iteratively reading for 1024 bytes.

The byte stream read is put to the interface for reliable
udp transmission.

3.3 Receiving Process

The process is similar to sending process. The receiver
will read from the packet the memory page content as well
as the metadata. It will pinpoint the virtual machine to
write memory into. Like sending process, it will calculate
the host virtual address for the HPA where that particular
page is mapped onto. Then it will write this byte stream into
the host virtual address. The receiving process will also tell
the UDP interface about how many bytes are successfully
written, and ask the UDP receiver to pass the data again if
there is write-to-memory failures.

3.4 Scatter/Gather Map

Each line for the scatter/gather map will contain six tu-
ples. They are:

1. source host IP

2. source vm number

3. source page number

4. destination host IP

5. destination vm number
6. destination page number

Suppose that this file is generated by CONCORD and is
shared among all the sending hosts. Each host will open the
file and read the records one by one. The IP address not
matching itself shall be ignored. Then all the records with
the source host IP equal to oneself shall be fabricated into
a linked list. This linked list will copy one by one into the
kernel memory space. The reason we have to do this is that
it is not realistic to read the mapping file in kernel.

3.5 Usage

In order to test our program, we generate a fake scat-
tergather mapping file called fake_map.txt. This map is
shared among all senders. In this experiment, we are test-
ing two source hosts for sending and two receiving hosts. We
need to run the receivers first.

For every receiving hosts we need to run.

v3_co_receive 12000
And for every sending node, we will run

v3_co_send fake_map.txt 12000

4. EXPERIMENT RESULTS

We test our program on Palacios and confirmed that the
memory pages can be transmitted with the integrity guar-
anteed by the memory page checksum. However, the speed
of transmission varies a lot in different cases. The best ex-
periment result we have right now is transferring memory
pages with the total size of 256MB in 6 seconds.

5. FUTURE WORK

Right now the practical efficiency is not as high as ex-
pected as in theory. In the future work, we will try to op-
timize our implementation to achieve higher throughput. A
few ideas about implementation optimization can be using
bitmap instead of linked list, and using the Datagram Con-
gest Control Protocol to do congestion control.

In the linux user space utilities, we can actually have more.
For example, we will have a v3_co_cancel to cancel a co-
migration job. Another issue is try to combine CONCORD
with our system so that we do not need to depend on the
temporary fake mapping file any more.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we briefly discussed the basic idea of virtual
machine co-migration and the advantages of co-migration.
Virtual machine co-migration is in theroy exploiting memory-
sharing scalable and high efficiency. We looked at our de-
sign idea of virtual machine co-migration and particularly
discussed in details the implementation of reliable UDP to
assist co-migration. We also carried out our experiment and
showed that the co-migration implementation is correct.

7. ACKNOWLEDGMENTS

This project is the summary for the EECS441 Resource
Virtualization quarter long project with the supervision of
Prof Peter Dinda. The authors would like to express their
appreciation for the great help from Prof Dinda in the pro-
cess.

APPENDIX

.1 References

[1] C. Clark, K. Fraser, Steven Hand, et al. Live Migration
of Virtual Machines. NSDI 2005.

[2] H. A. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin,
et al. SnowFlock: Rapid Virtual Machine Cloning for Cloud
Computing. in European Conference on Computer Systems
(Eurosys). 20009.

[3] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ri-
peanu, é{VXIJVmﬂock: virtual machine co-migration for the
cloud,éAI in Proceedings of the 20th international sympo-
sium on High performance distributed computing, ser. HPDC
4AZ11. New York, NY, USA: ACM, 2011, pp. 159aA3170.

